Skip to main content
National MagLab logo

The MagLab is funded by the National Science Foundation and the State of Florida.

Torque Magnetometry in Pulsed Fields

In pulsed fields, torque magnetometry is a highly sensitive technique for measuring magnetically anisotropic materials.

The unloaded resonant frequency of 250-300kHz allows for fast response in pulsed magnetic fields (65T – 8ms rise time). A balanced Wheatstone bridge and ground shielding to prevent inductive/capacitive cross talk are used to detect a torque signal on the order of 10-13 Nm on sub-µg samples. The noise floor of a typical balanced bridge resistance measurement is less than 5mΩ/500Ω. The torque magnetometry technique has been successfully used to detect anisotropy changes in strongly correlated magnetic systems and resolve quantum oscillations for mapping out Fermi surface topology.

magnet schedule art

What's happening at the MagLab tody?

Explore our magnet schedule to see what exciting research is happening on our stellar fleet of instruments right now.

Images & Sample Data

Credit: National MagLab

Related Publications

K.A. Modic, et al, Realization of a three-dimensional spin-anisotropic harmonic honeycomb iridate, Nat. Commun. 5:4203 doi: 10.1038/ncomms5203 (2014) Read online.


J.G. Analytis, et al, Quantum oscillations in the parent pnictide BaFe2As2: Itinerant electrons in the reconstructed state, Phys. Rev. B 103 (2009) Read online.


J.G. Analytis, et al, Fermi Surface of SrFe2P2 Determined by the de Haas–van Alphen Effect, Phys. Rev. B 103 (2009) Read online.


Amalia I. Coldea, et al, Topological Change of the Fermi Surface in Ternary Iron Pnictides with Reduced c/a Ratio: A de Haas–van Alphen Study of CaFe2P2, Phys. Rev. B 103 (2009) Read online.

Staff Contact


Last modified on 01 August 2023

search magnet icon

Find the Perfect Magnet
for your Research

Search our magnets by field strength, bore size, and even technique.