Tag: Life research
These awesome diagnostic tools, powered by strong superconducting magnets, save countless lives with their ability to pinpoint tumors and other abnormalities.
Follow us down this yellow brick road to learn how these deceptively small molecules conceal enormous potential for applications from carbon capture to data storage.
This work investigates a series of oxoiron complexes that serve as models towards understanding the mechanism of catalysis for certain iron-containing enzymes.
Insights into the structure and movement of T cell surface proteins could lead to new ways to fight cancers, infections and other diseases.
High-magnetic-field time-resolved electron magnetic resonance was used to probe the unusual manganese/iron complex that is believed to play a role in the disease-producing activity of tuberculosis “superbugs,” revealing a vacancy in the vicinity of the manganese that is believed to enable a target molecule to bind to the metal ion.
Protein oxidative damage is a common occurrence in a number of diseases, including cancer, neurodegenerative, and cardiovascular disease. Yet, little is known about its contribution to these illnesses. We developed a new technique, utilizing an infrared laser in combination with a mass spectrometer, to selectively identify sites of oxidation in complex protein mixtures. This sensitive and rapid platform may outperform current techniques and thus shed light on the involvement of oxidative damage in each of these diseases.
Molecular fossils of chlorophyll (called porphyrins) more than 1.1 billion years old find suggest that photosynthesis began 600 million years earlier than previously established.
Scientists will be able to apply the technique to characterize similar molecules, helping develop vaccines and drugs to treat bacterial infection.
Precise determination of hemoglobin sequence and subunit quantitation from human blood for diagnosis of hemoglobin-based diseases.
Combining spatial imaging technology with ultrahigh performance FT-ICR mass spectrometry provides users with the unique ability to create tissue images of identified biomolecules. This technology will be applied to understand human health and disease.
Sunlight can chemically transform plastics from consumer plastic bags into complex chemical mixtures that leach into the ocean. Understanding the impact of plastic pollution requires advanced analytical techniques that can identify transformed plastic molecules in water samples, and requires instrumentation only available at the MagLab.
A new Blood Proteoform Atlas maps 30,000 unique proteoforms as they appear in 21 different cell types found in human blood. The MagLab's 21 tesla FT-ICR mass spectrometer contributed nearly a third of the atlas' proteoforms.
Using the world's most powerful mass spectrometer, scientists have developed a new method to profile complex PFAS mixtures at the molecular level, facilitating future PFAS characterization in support of environmental and human health studies.
New technique could lead to precise, personalized cancer diagnosis and monitoring.
Researchers used the MagLab to produce the first clarified map of KRAS proteins in colon cancer tumors. Twenty-eight additional forms of the KRAS protein were discovered, including a new form of the protein (called clipped-KRAS) that does not bind to the cell membrane, instead serving as a kind of on-off switch to regulate cell growth. These findings may help yield future cancer treatments.
Identification of toxic compounds in drinking water formed through disinfection reveals more than 3500 toxic, chlorinated species that can only be observed by the MagLab's high powered analytical instruments.
The 21T FT-ICR MS instrument enables the molecular characterization of atmospheric hazes - like that on Saturn’s moon, Titan - and water vapor to better understand the evolution of biological molecules in exoplanet atmospheres.
Scientists measured the first in vivo images of stimulated current within the brain using an imaging method that may improve reproducibility and safety, and help understand the mechanisms of action of electrical stimulation.
Three variants of the coral species A cervicornis were found to have unique metabolic signatures that can be distinguished by NMR spectroscopy. Differing levels of the metabolite trimethylamine-N-oxide, an important compound that protects against nitrogen overload, can distinguish the three variants studied. Understanding how species vary metabolically, and how that translates to species survival in stressed environments, may help us to establish desirable traits that could help with restoration and other interventions.
Little is known about the path of metabolic waste clearance from the brain. Here, high-field magnetic resonance images a possible pathway for metabolic waste removal from the brain and suggests that waste clearance may be one reason why we sleep.
Magnetic Resonance Imaging (MRI) of mouse models for Alzheimer’s disease can be used to determine brain response to plaque deposits and inflammation that ultimately disrupt emotion, learning, and memory. Quantification of the early changes with high resolution MRI could help monitor and predict disease progression, as well as potentially suggest new treatment methods.
Magnetic resonance of cancer cell metabolism is a novel technique to discern between cancerous and normal liver cells, providing a promising approach for cancer stage progression imaging without the harmful exposure of radiation.
Non-alcoholic Fatty Liver Disease and its progression to more serious diseases will become the main cause for liver transplant in the next 5 years. Here, researchers used deuterium magnetic resonance to study dietary influences on lipid synthesis demonstrating that high fat ketogenic diets significantly slow de novo lipogenesis, a process by which excess carbohydrates are covered into fatty acids and stored as triacylglycerols.
An insect's ability to survive anaerobic conditions (without oxygen) during winter pupation occurs through periodic cycling of aerobic respiration pathways needed to recharge energy and clear waste. The cellular mechanisms at play during these brief near-arousal periods can provide clues to help improve the success in storage and transplant of human organs.
MRI scans taken after a stroke show brightness around the injury, the origins of which have been a long-standing and vexatious mystery for scientists. This work suggests these MRI signal changes result from fluid changes in glial cell volumes, results that could advance our ability to distinguish reversible and irreversible stroke events or provide a better understanding for other disorders such as Parkinson's, Alzheimer's, and mood or sleep disorders.
Using NMR, researchers determined a molecular model of a protein-polymer conjugate, providing new insights into how polymers can be used to make protein drugs more robust.
Deuterated water (2H2O) is often used to examine metabolic pathways in humans and animals. However, it can cause toxicity and distort metabolic readings. Here, using nuclear magnetic resonance technology, the researchers showed that a different molecule, 18O water (H218O), can be used instead of deuterated water to provide similar information without the metabolic distortions.
Scientists can create synthetic imitations of natural polymers, such as DNA, which provide an understanding of how nature works and can confer unique properties to the polymer that enable new applications in biotechnology. Researchers have discovered a new DNA structure can be created by adding a synthetic nucleotide to the DNA sequence. This new structure forms a compact fold that could have significant implications for the use of DNA in chemical sensors and information storage.
With unprecedented sensitivity and resolution from state-of-the-art magnets, scientists have identified for the first time the cell wall structure of one of the most prevalent and deadly fungi.
With advanced techniques and world-record magnetic fields, researchers have detected new MRI signals from brain tumors.
This finding demonstrates a path forward to dramatically enhance sensitivity for molecule concentration measurement by magnetic resonance using Overhauser DNP.
Magnetic resonance (MR) signals of sodium and potassium nuclei during ion binding are attracting increased attention as a potential biomarker of in vivo cell energy metabolism. This new analytical tool helps describe and visualize the results of MR experiments in the presence of in vivo ion binding.
Metal-organic frameworks (MOFs) are porous materials with high surface areas that can host a variety of different guest molecules, leading to applications in catalysis, drug delivery, chemical separation, fuel cells, and data storage. In order to design better MOFs, knowledge of their molecular-level structures is crucial. At the MagLab, the highest-field NMR spectrometer in the world was used to probe the complex structures of MOFs both "as built" and as they exist when other "guest" molecules are inserted inside the framework.
Measurements performed at the National High Magnetic Field Laboratory provide unique insight into molecular structure of next-generation catalysts for the production of the widely used industrial chemical, propene.
A new method to study how the nuclei of atoms “communicate” with one another in the presence of unpaired electron spins has been developed at the MagLab. Known as hyperpolarization resurgence (HypRes), this method benefits and expands the application of a revolutionary technique known as dynamic nuclear polarization (DNP), which provides enormous signal enhancements in nuclear magnetic resonance (NMR) experiments.
Scientists have used high-field nuclear magnetic resonance (NMR) to reveal how fungal pathogens use carbohydrates and proteins to build their cell walls (the protective layers outside of the cell). These findings will guide the development of novel antifungal drugs that target the cell wall molecules to combat life-threatening diseases caused by invasive fungal infections.
This new technique for mapping out atom placements in the active site of enzymes could unlock the potential for finding new therapeutics.
A new 17O solid-state NMR technique, employed on the highest-field NMR spectrometer in the world (the 36 T Series Connected Hybrid), identifies water molecules in different layers of a model membrane for the first time.
Combining high magnetic fields, specialized probes, and measurement techniques, this work adds the crucial 17O nucleus into the study of biomolecules like peptides, proteins, and enzymes.
A protein modification rarely found in terrestrial animals was discovered in the slime of the velvet worm. This slime, which is projected for prey capture and self defence, turns into strong, sticky, water-soluble fibers. Dynamic nuclear polarization - nuclear magnetic resonance (DNP-NMR) facilities at the MagLab were used to understand the molecular structure of these fibers, work that may inspire the development and production of new classes of sustainable, advanced materials.
Datasets of rat brain imaging can be difficult to compare due to the different conditions used to collect them. The Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility participated in a multi-institution study to develop a standardized protocol for functional MRI rat brain datasets, work that will help data be reused effectively to yield new discoveries.
Research sheds new light on the formation of harmful structures that can lead to neurodegenerative diseases.
State-of-the-art ion cyclotron resonance magnet system offers researchers significantly more power and accuracy than ever before.
The National Science Foundation announces five-year funding grant for continued operation of the world’s most powerful magnet lab.
The visit marked the first time the Group of Senior Officials for Global Infrastructures has met in the United States.
35 highlights out of 423 reports representing the best of life sciences, chemistry, magnet science and technology, and condensed matter physics.
MagLab data provide compelling evidence that extensive oxygenation took place in the ocean millions of years before the atmosphere’s “Great Oxidation Event.”
In findings that could shed light on current climate changes, researchers find conclusive evidence linking rising sea levels and lowering oxygen levels to decimation of marine species.
Findings clarify the role of sodium increase early in migraines and point to the region where symptoms may start.
Researchers at the National MagLab will study the role sodium plays in this painful disease and test treatments that could offer relief.
New insights challenge current understanding of how ion transport through some cell membranes works.
Tallahassee Company MagCorp to Partner with National MagLab.
New research finds evidence that Earth's water originated in asteroids.
Researchers believe the ocean oxygenation occurred over a few tens of thousands of years, a very brief period in Earth’s geological history.
The MagLab and the Bruker Corporation have installed the world’s first 21 tesla magnet for Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry.
MagLab analysis finds the space rock is among the most complex materials.
Improving technology for research of biomolecules and advancing our understanding of health and disease.
MagLab NMR Facility Director Rob Schurko was awarded the Vold Prize for his contributions to the field of solid-state NMR over the past 25 years.
"We're opening up the world at a molecular level to understand how these fires are going to impact us."
Researchers are working to characterize the virus’ envelope protein, or E protein, believed to be key to virus activity.
The first mass spectrum from Fourier-Transform Ion Cyclotron Resonance happened in December 1973. The co-inventor went on to build MagLab’s world-renowned program.
A MagLab biomedical engineering research group blazes a trail for women in science.
MagLab research works to find and catalog PFAS forever chemicals in our environment.
Research shows the fungus shuffles and rebuilds its cell wall to defend against antifungal drugs.
MagLab theoretical physicists uncovered unique properties of iron monoxide which may play a role in transferring heat from Earth’s core to the surface.
New tool will enable biological research and bioengineering at a super-small scale, opening the door to improved testing of pharmaceuticals and creation of healthcare nanorobots.
Researcher digs below the coronavirus's membrane in search of another layer of infection-causing proteins.
For membrane protein expert Tim Cross, solving the structure of a misunderstood protein put retirement on hold.
The virus that causes COVID-19 has thousands of potential drug targets. A global team is on a hunt for the best candidates.
What happens when a kid with ADHD sustains a concussion? Using high-field magnets, researchers are working to find out.
Using advanced MRI, a mechanical engineer tackles the question: "Why do you have these big fluid spaces in your head?"
New research is a first step toward understanding how a certain protein may help tuberculosis bacteria survive.
MagLab researchers and doctors at the University of Florida are testing a new MRI technique that can deliver images of the lungs like never before
Used to perform complex chemical analysis, this magnet offers researchers the world's highest field for ion cyclotron resonance mass spectrometry.
It's freaking hard to examine proteins closely in their native habitat. With the help of very clever magnet instrumentation, University of Texas scientist Kendra Frederick is up for the challenge.
Andreas Neubauer took the extended stay option during his recent trip to the MagLab. After all, you can't rush art — especially when it's mixed with science.
More Tags
- Biology
- Biochemistry
- Chemistry
- Cryogenics
- Dynamic nuclear polarization
- Energy research
- Engineering
- Environment
- Geochemistry
- Health research
- Life research
- Magnet technology
- Mass spectrometry
- Materials research
- NMR and MRI
- Physics
- Postdocs and grad students
- Quantum computing
- Science & Art
- Semiconductors
- STEM education
- Superconductivity
- Universe
- 100-tesla multi-shot magnet
- 32-tesla superconducting magnet
- 45-tesla hybrid magnet
- 900MHz magnet
- 36-tesla SCH
- 25-tesla split magnet
- 41-tesla resistive magnet
- 21-tesla ICR magnet
- 600 MHz 89 mm MAS DNP System