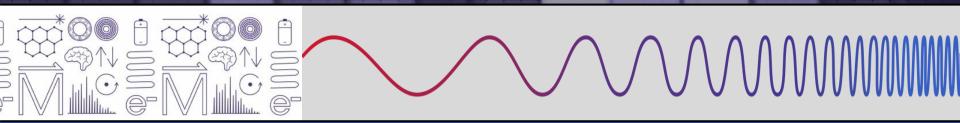


The National MagLab Presents: Tesla Tales

Carlos R. Villa

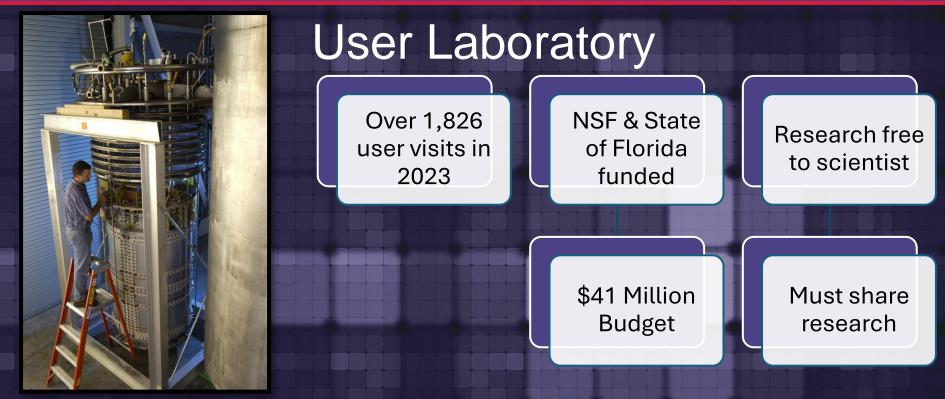

Director of K-12 Education Programs National High Magnetic Field Laboratory 2018 NSTA Distinguished Informal Science Educator 2021 Tallahassee Scientific Society Gold Medal Recipient

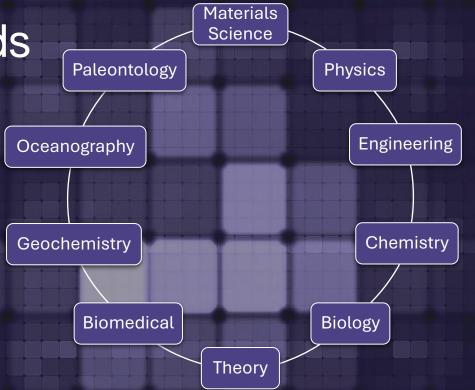
U.S. National Science Foundation

About the National High Magnetic Field Laboratory

One of 7 high magnetic field labs in the world

Only one in western hemisphere

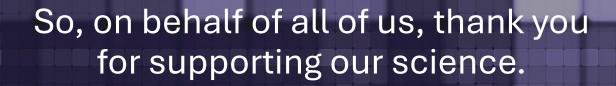

Largest and highest powered in the world



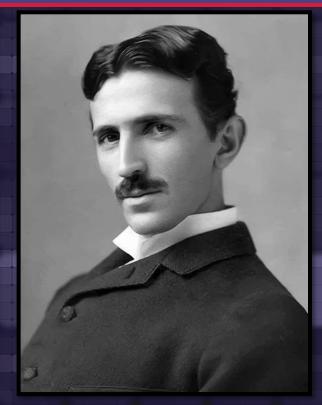
Research in many fields (Not just magnets)

Center for Integrating Research & Learning

Center for Integrating Research & Learning



The National MagLab is taxpayerfunded by the **National Science Foundation** and the **State of Florida** making **you** a stakeholder in this facility.

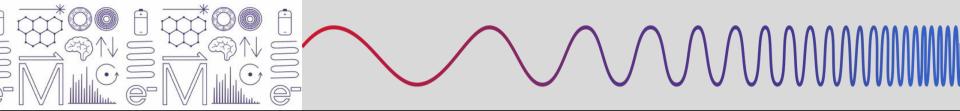

About the Magnets

Nicola Tesla

Tesla Measurement of • magnetic fields Named for Serbian Scientist Nikola Tesla

Magnetic Fields around us (In Tesla)

Refrigerator magnet:	.03 T
Earth's magnetic field:	.000045 T
Person's magnetic field:	3 x10 ⁻¹³ T
Junkyard magnet:	1 T
Magnetic Resonance Imaging (MRI) magnet:	1.5–2T


Magnetic Fields at the MagLab (In Tesla) World Record Magnets in Red

McKnight Brain Institute MRI	3 T (60 mm)
Ion Cyclotron Resonance magnet (ICR)	
900 Mhz Nuclear Magnetic Resonance (NMR)	21 T (100 mm)
Typical resistive magnet (ResMag)	24-31 T
Split cell ResMag	25 T
Water Cooled ResMag	41 T
Hybrid magnet (33 MW)	45.2 T
Series Connected Hybrid (14 MW)	35 T
NHMFL Pulse Magnet (Los Alamos)	100.7 T

Magnetism Throughout History

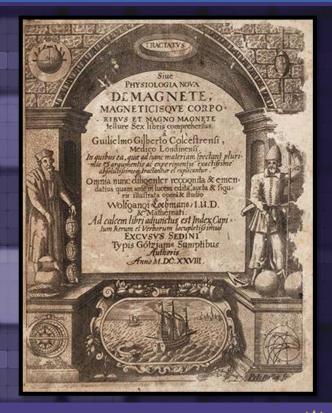
First Magnet Discoveries

 In Greece, 2000 BC Magnes the shepherd • In China, 400 BC • Feng shui The south pointer • In Rome, 50 AD • Pliny the Elder Naturalist and researcher "Magic" with healing properties

1269: Petrus Peregrinus de Maricourt

• Epistola de Magnete

- Part 1 discusses the physical (not occult) properties of magnets
 - Magnetic fields can act at a distance
 - Magnets can only act on other magnetic materials
 - Opposite poles attract and like poles repel
 - When suspended, north poles point North and south poles point South.

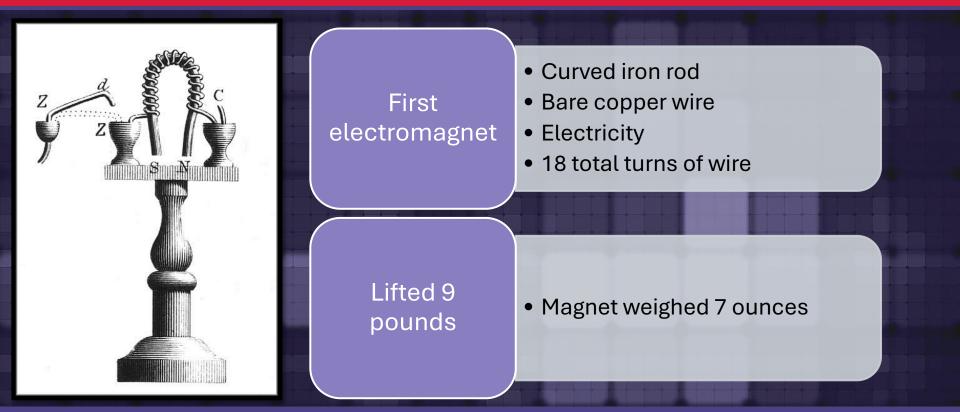

Part 2 discusses the use of magnets in devices Wet and dry compass

1600: William Gilbert

Published De Magnete
Earth is a magnet
First critical research on magnets
Used lodestone
Dispelled <u>superstitions and myths</u>

1820: Hans Christian Ørsted

- An electrical current can create a magnetic field
- Oersted set up lecture demonstration
 - Used battery to supply current
 - Showed compass needle deflecting near the wire


1820: André-Marie Ampère

- Moving electrical charges produce magnetic fields
- Simple experiment
 - Two straight wires with current passed through
 - Wires bowed toward or away
 - Led to electromagnets

1824: William Sturgeon

1827: Joseph Henry

Improved the electromagnet

Larger iron rod Copper wire Insulated with silk

An electromagnet using two electrodes attached to a battery, best to wind coils of wire in parallel

But an electromagnet using with multiple batteries, should use only one single coil

1831: Michael Faraday

- Wrapped wires around opposite sides of an iron ring
 - Change in magnetic field produces an electric current
 - Induction
- Magnetic Flux: The change needed to induce current
 - Move a magnet in and out of a coil of wires
- Originally rejected: Not formulated mathematically

• James Clerk Maxwell (1862): Maxwell-Faraday equation

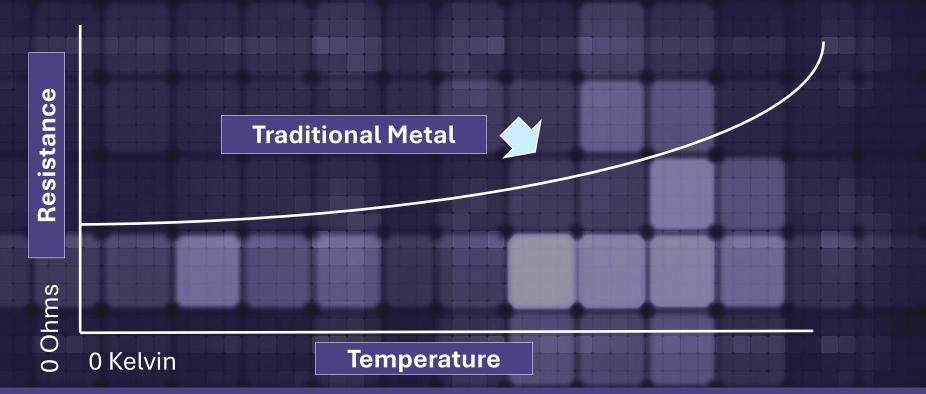
1834: Emil Lenz

 Lenz's Law: An induced current in a Copper Tube wire (by flux) will flow to create a field that opposes the flux

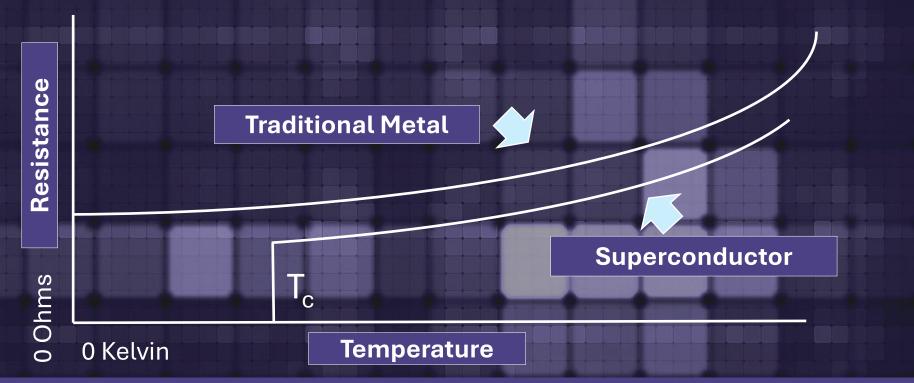
- Eddy currents created
- Used in magnetic braking systems
 - Rollercoasters
 - Electric car braking feedback

Primary Magnetic • -ield

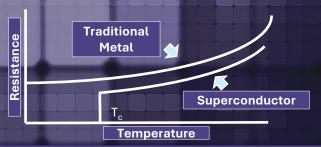
> Secondary Magnetic Field


Eddv

Current


1900: Superconductivity

1900: Superconductivity



1900: Superconductivity

• BCS: Bardeen, Cooper, Schreiffer

- At low temperatures, some metals lose resistance
- Nucleus nearly stationary
- Superconductivity results from the formation of Cooper pairs
- Two electrons partnered
 - One follows the other
 - Results in frictionless flow of electrons

The Science of Magnetism

•All magnets have poles North & South • Opposites attract; Like repels • But not really: Magnetic monopole Ongoing research

• All magnets have magnetic fields • Fields are responsible for attracting and repelling Magnetic field is a vector field Has direction and magnitude

Magnets Repel

Magnets Attract

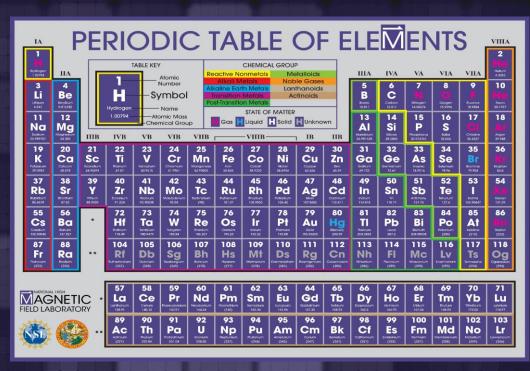
- Magnetic fields invisible to humans
- Many animals can sense magnetism
 - Sea turtles
 - Migratory birdsSharks

Family Canidae

- Foxes listen and aligns with the angle of the sound waves.
- Protein in their eyes allows them to detect magnetic field.
- When they align to the north, they successfully pounce on their prey 74% of the time.
- If they align in any other direction, they are only successful 18% of the time.

•Rare animals can see magnetism

- European Robins
- Only in bright settings
- Right eye and the left half of brain



- 3 metals are naturally magnetic at room temperature
 - Iron, Nickel, Cobalt
- Two more are magnetic at lower temperatures
 - Gadolinium (65 F and below), Dysprosium (-301 F and below)
- One more magnetic at abnormal conditions
 - Ruthenium (In unnatural form)
- Many are magnetic as alloys
 - Rare-Earth elements

DO YOU LIKE MOVIES?

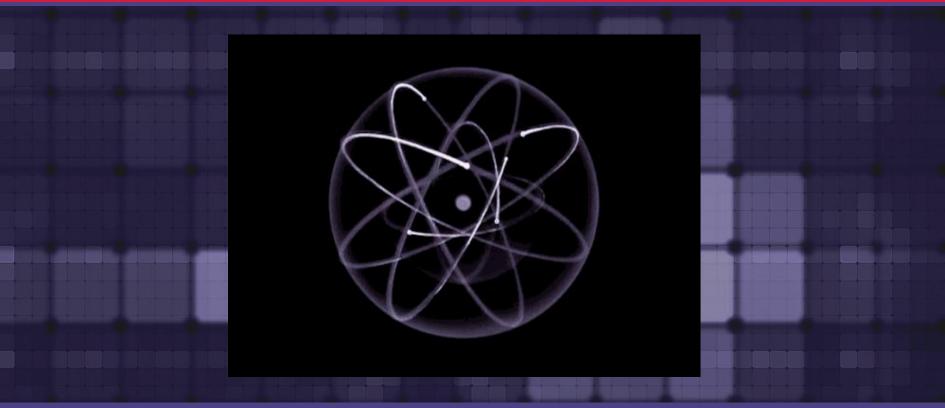
WHAT IS THIS ONE CALLED?

Permanent magnets

- Almost always keep their field
- Fields can be lost
 - Curie point (Heat)
 - Electric current (Degauss)
 - Hitting it (Blunt force)

Temporary magnets

- Will keep magnetic field until tampered with
- Examples: Paperclips, scissors, staples, thumb tacks, pins, screwdrivers, refrigerator door, car doors, etc...
- Anything that is magnetic, but will not keep its field



 Name atom comes from Atomos, Greek for Indestructible (not really) The atom is divisible • Proton Neutron Electron


Motion of charged particles creates magnetic fields

- In most atoms, disorganized spins cancel out
 - Magnetic domains: when electrons line up
- Magnetic field is produced when all electrons spin the same direction:
 - More electrons lined up: more magnetism

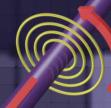
The Science of Electromagnetism

- Electrons make magnetism work
 - Spin of electrons

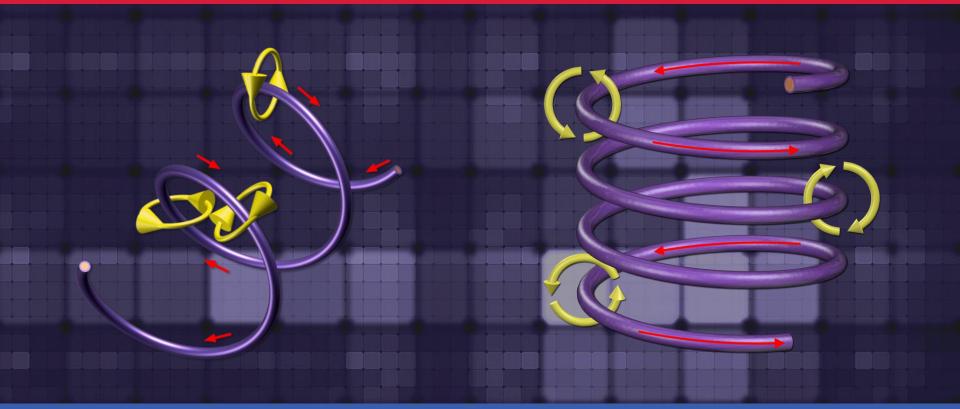
Electrons make electricity work Movement of electrons

The two are so closely related

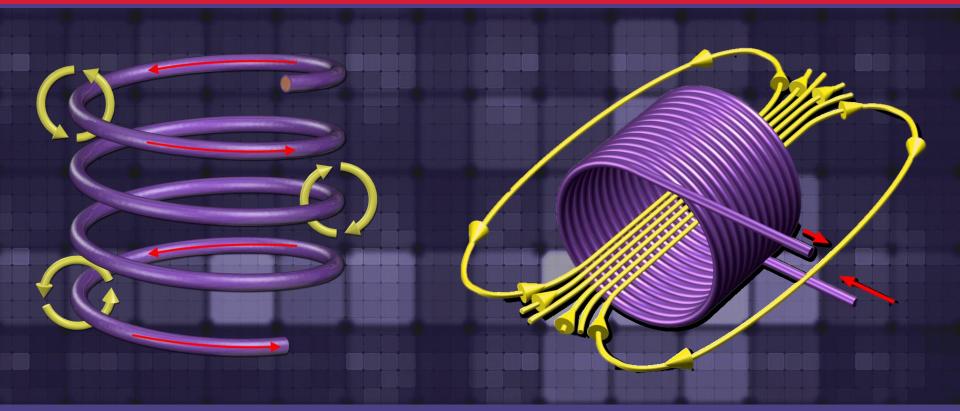
- Where there is electricity, there is a magnetic field
- When electrons flow, they line up (Ørsted)
- Where there is a magnetic field, electricity can be created (Faraday)
 - Magnetic flux can create movement of electrons

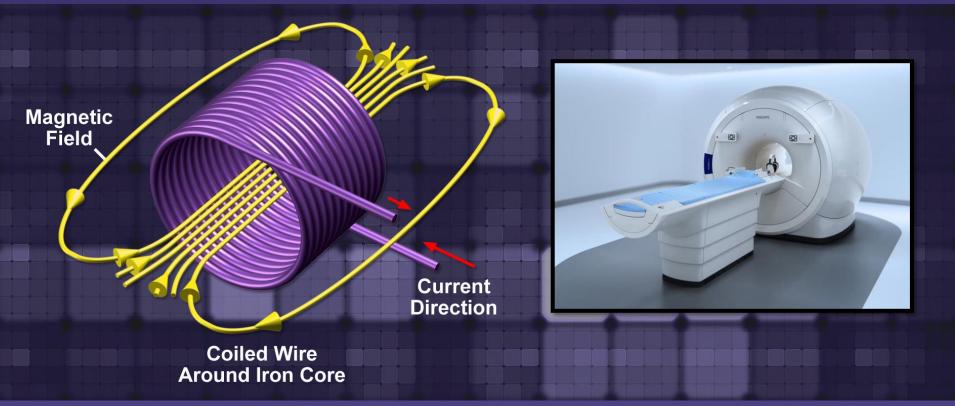


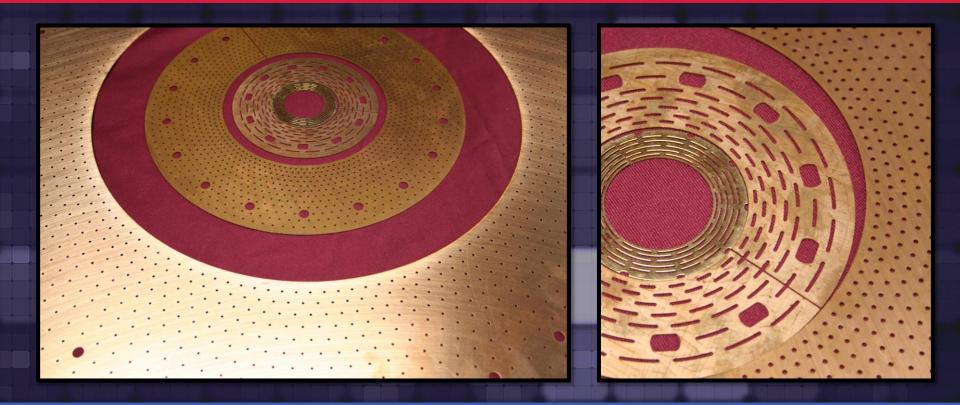
- Electricity is the flow of electrons
 - Electrons flow in same direction
- This alignment of electrons creates a magnetic field around the conductor
 - Similar to electrons lining up in a permanent magnet
 - Every wire carrying electricity has a weak magnetic field around it

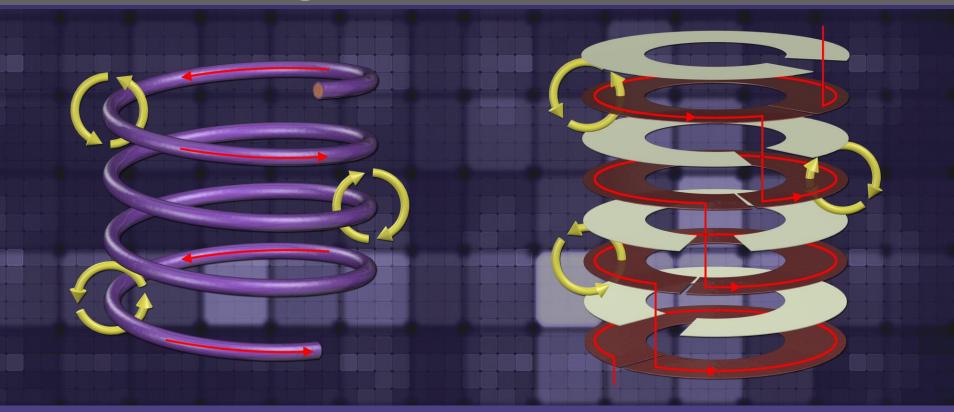


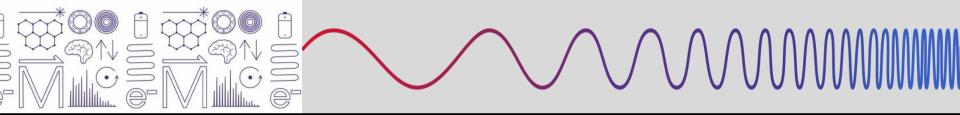
The field exists at all points along the wire
Coiling the wire concentrates the magnetic field inside the coil





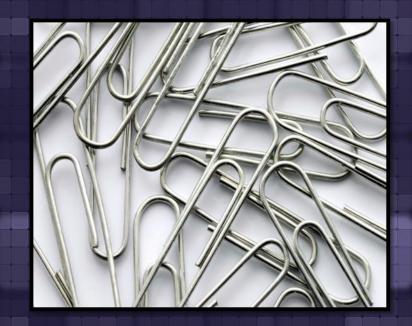






Electromagnetism Activities For Your Classroom

Magnetism in Money


- Money is magnetic
 - Coins are copper-nickel alloy (not magnetic)
 - Pennies are copper-plated zinc (also not magnetic)
 - Dollars are printed with iron-rich ink (magnetic!)
- Foreign Coins
 - Canadian, British, Brazilian, Mexican (some)...

Permanent & Temporary Magnets

•

No rubbing necessary

- Magnetism happens almost instantly
- They are magnets
- North and South
 - Attract and Repel
- Paper Clips remain magnetic
- Until something tampers with their field
 - Field could last years

Universal Magnetism

- Meteors are high in iron content
- Burn up in atmosphere
- Waves wash them ashore

Hold a strong magnet over beach sand
Iron will attract to the magnet

- Excess sand will cling to the magnet
 - Purify by spreading it on a sheet of paper and passing the magnet over it

Materials

- Copper wire
- Iron rod
- Battery
- Extensions:
 - 2 batteries
 - In line?
 - Smaller iron core
 - Aluminum or wooden rod
 - Will they work?

- Poles (Winding direction)
 Which is North or South?
 Right hand rule
- Variables:
 - Neatness
 - Number of winds
 - Wire gauge
 - Battery strength
 - Core size
 - Temperature
 - Precision

All Manual Manual Street

Make a Speaker

 Speakers work with a permanent magnet in an electromagnet coil

 Music sent as electrical current creates flux in the coil, causing the magnet to vibrate

• Vibration creates the sound we hear

AC/DC Current Detector

Device shows AC current

<u>Materials</u>

- Bi-color LED
- 1/2 Watt, 400-500 Ohm resistor
- Lamp cord
- 2-prong plug
- 2-prong socket
- Electrical tape
- 9-volt AC adaptor/transformer

Induction by Gravity Part 1

- Movement of magnetic field by a conductor creates motion of electrons
 - Current is induced
 - Basis of electric generators
- Gravity pulls magnet past conducting coil
- Induced current in copper tube created Eddy currents
 - Currents repel magnet

Induction by Gravity Part 2

- Movement of magnetic field by a conductor creates motion of electrons
 Current is induced
 - Current is induced
 - Basis of electric generators
- Gravity pulls magnet past conducting coil
 - Induced current lights LED

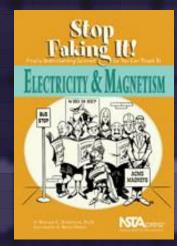
Plotting Electric Field Lines

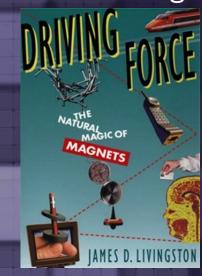
AGLAB HOME KIDS TEENS ADULTS / COLLEGE STUDENTS TEACHERS	Search I	Magnet Academy	Q or CUSTOM SEARCH	
MAGNEI7ACADEMY wo		ORING THE WIDE LD OF ELECTRICITY MAGNETISM		
WATCH & PLAY - LEARN THE BASICS - EXPLORE HISTORY - TR	Y THIS AT HOME	PLAN A LESSON	FOLLOW THE LINKS	
Plotting Electric Field Lines		National High Mag	MagLab? s brought to you by the netic Field Laboratory — the powered magnet lab in the	
Concepts covered • Electric fields • Forces		Search Ma	gnet Academy	
Time		Торіс		
This activity requires about 1-1.5 hours to complete.		Select Topic	Ŧ	
Background		Age Range		
There are four fundamental interactions that occur in nature; in physics they are referred to as fundamental forces. The four forces are gravitational, electromagnetic, strong nuclear and weak nuclear. For this lesson we will focus on the electromagnetic force, specifically the force produced b an electric field [E].		Select Age Range	e 🔻	
		Format		
The concept of the electric field is a bit esoteric compared to, let's say, a gravitational field because we can interact much more easily with a gravitational field than we can with an electric field. If we take a ball (basketball, golf ball, baseball, etc.) and drop it, we see that it falls toward the Earth. This happens because the ball is in a gravitational field and the gravitational field produced by the Earth interacts with the mass of the ball. We assume, for the most part, that the gravitational field experienced by the		Select Format	¥	
		Grade (U.S.)		
		Select Grade (U.S	S.) 🔻	
ball is uniform, therefore, the ball falls straight from your hand to the ground. The force				
field on the ball is F = mg (force =mass of the ball x gravity) Figure 1.		Find My Sciencel	Reset	

Headquartered at Florida State University

More Lesson Plan Ideas

- Electric Motors
- Ion Motors
- Homopolar Motors
- Permanent Magnets
- Making Microphones


Magnetism Resources For Further Learning

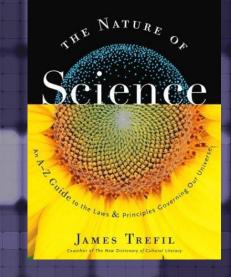


Stop Faking It Bill Robertson

Driving Force James D. Livingston

<u>A Short History of</u> <u>Nearly Everything</u> Bill Bryson

THE NATIONAL BESTSELLER "Destined to become a modern classic of science writing." —New York Times Book Review

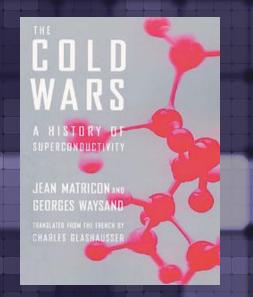


BILL BRYSON

*A Short History of Nearly Everything Author of A Walk in the Woods and In a Sunburned Country

The Nature of Science

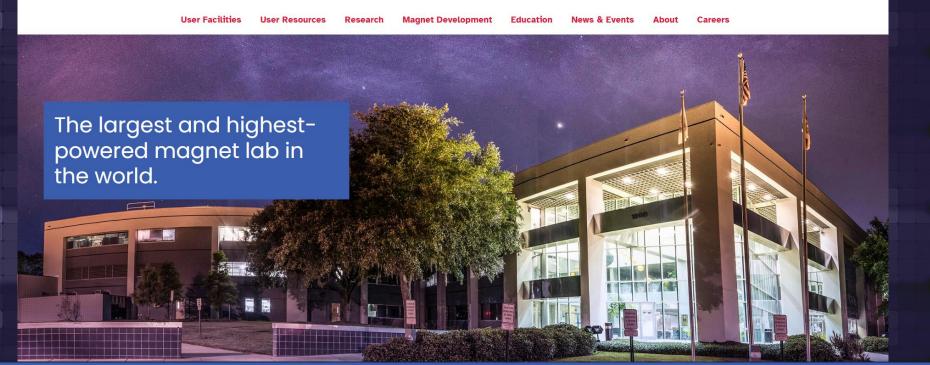
James Trefil



Headquartered at Florida State University

The Cold Wars

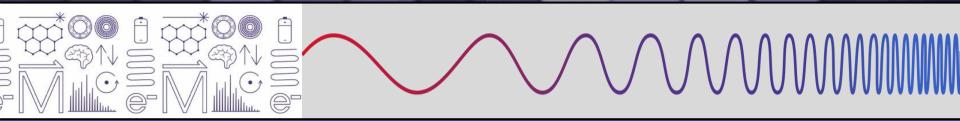
Jean Matricon & Georges Waysand



🕼 Magnet Academy 🛛 Q Search

User Facilities	User Resources	Research	Magnet Development	Education	News & Events	About	Careers

Home / Education


With a strong commitment to education, the lab supports educational programming at all academic levels: K-12, technical, undergraduate, graduate and postdoctoral.

Bulletin Board

2023 Florida

NSF

MagLab Research Experience for Teachers (RET)

Headquartered at Florida State University

Summer 2025 Program (June 23-27) Summer Program How Do I Get Accepted 1 Week in Person • Complete online application • In the MagLab • 4 weeks virtual Complete program surveys • Wherever Home Is Submit lesson plan • \$3600 stipend

- Week in Tallahassee we supply
 - Housing
 - Travel stipend
- Program is open to Elementary, Middle, and High School teachers
- Pre-service teacher positions available

Focus of the program

- Nature of Science
- Argument Driven Inquiry
- Communicating in science
- Experimental Design
- Culturally Responsive Pedagogy

Topics for Lesson Plan Research

- Materials Engineering
- Superconductivity
- Condensed Matter
- Environmental Science
- Quantum Phenomenon
- Theoretical Physics

Applications Open now!

Thank you!

Carlos R. Villa villa@magnet.fsu.edu

U.S. National Science Foundation

